

Proc.1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 195

Proc. 1st International Conference on

Machine Learning and Data Engineering (iCMLDE2017)

20-22 Nov 2017, Sydney, Australia

ISBN: 978-0-6480147-3-7

 Using Genetic Algorithm with Triple Crossover to Solve

Travelling Salesman Problem

Shamima Akter
1
,Mohammad Sanaullah Chowdhury

2
,Subrina Akter

3
,Lutfun Nahar

4
 and Md.

Wahid Murad
5

1,2

Department of CSE, University of Chittagong, Bangladesh
3,4

Department of CSE, International Islamic University Chittagong, Bangladesh
5
Senior Software Engineer, DataSoft Systems Bangladesh Limited

Corresponding author’s E-mail: sana1691@gmail.com

Abstract

TSP is a popular and demanding NP hard problem. Many researchers get interest into it. There are a

numerous methods such as SCX, ERX, and GNX etc. for solving TSP with GA. In our paper we

proposed a new solution for Traveling Salesman Problem (TSP) using genetic algorithm. A triple
crossover technique is applied for finding best & optimal solution of this problem. Triple Crossover

Operator (TCO) separate the parent’s strings into three substrings comparing cost and derive new

partial Offspring containing duplicate nodes then replacing the missing nodes with duplicate nodes
allows the system to generate high performance chromosomes. This solution is compared with

different well performing Crossover technique. Our Experimental result shows that, due to the well

crossover technique has improved performance. Moreover the complexity of this algorithm is
negligible.

Keywords: TSP; GA; TCO; SCX; ERX; GNX; substring

1. INTRODUCTION

Travelling Salesman Problem (TSP) is very popular and challenging problem in computer science and

computational research. This problem can be stated as, travel all the nodes in a city exactly once and
then back to the starting nodes with minimum cost. This is a NP hard problem and cannot be solved

exactly in polynomial time. The TSP applied in different situations like automatic drilling of printed

circuit boards and threading of scan cells in a testable VLSI circuit as suggested by ravikumar (1992),
X-ray crystallography as suggested by zakir (2010), etc.

Many different methods of optimization have been used to solve TSP, like Tabu search, Simulated

Annealing, Particle swarm, Hill climbing and Genetic algorithm as suggested by davis (1985) , Po.n
and Carter(1995) etc. .Jun Li (1992) proposed an algorithm for solving TSP problem with exclusive

and ordinary cities. The algorithm amended two-chromosome format and planned three pairs of

crossover and mutation operators. Aybers et al (2009) suggested a method using Euclidean TSP. This
is a NP – hard problem associated with resolving the shortest path through a known set of nodes in n-

dimensional Euclidean space.

Another existing parallel GA performance to solve the TSP is done by davis (1985). In this paper
order crossover and 2-opt mutation method is done. This paper calculates the different elements

among populations. The crossover and mutation parts belong to inner parallelization. The

differentiation in the crossover part is to create one new Offspring with the combination of two

parents. In our paper we choose Genetic Algorithm to solve TSP to find an optimum solution by
proposing a new crossover technique.

USING GA WITH TRIPLE CROSSOVER TO SOLVE TSP Akter

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 196

 GAs stores a population of chromosomes, each of which is a candidate solution for its

corresponding problem. In each generation (iteration) of the heuristic, several operations are

performed on the chromosomes to improve the overall fitness (i.e., cost) of the population.

The genetic algorithm process consists of the following:

1) Encoding: An appropriate encoding is choose for the solution to our problem so that each

possible solution has distinct encoding and the some form of a string is called encoding.

2) Evaluation: Next step is to select the initial population, usually at random though different
techniques using heuristics have also been proposed. By using the fitness function each individual in

the population is then computed. The nearest fittest individual is choosing for the next process.

3) Crossover: The fittest population is used to find the individual’s probability of crossover.

Crossover is where the two individuals are recombined to create new offspring which are copied into
the new population space. In our paper we use a new crossover operation to make new population.

4) Mutation: Next mutation occurs .Mutation is a genetic operator used to maintain genetic

diversity from one generation of a population of chromosomes to the next. The character in the
corresponding position of the string is changed.

5) Decoding: In this stage the process is complete. Finally a new generation has been formed and

the process is repeated until our optimize criteria has been met. At this point the individual which is
closest to the optimum is decoded.

2. METHODOLOGY

We Genetic algorithms (GAs) are based essentially on mimicking the survival of the fittest among the
species generated by random changes in the gene-structure of the chromosomes in the evolutionary

biology as suggested by goldverg (1989). In order to solve any real life problem by GA, two main

requirements are to be satisfied:

 (a) A string can represent a solution of the solution space
 (b) An objective function and hence a fitness function which measures the goodness of a solution can

be defined as suggested by zakir (2010).

2.1. Proposed Genetic Algorithm for Solving TSP

1) At first initial populations of individual strings of nodes are created randomly for the selected

TSP problem. Create a cost matrix of the path between every two cities.

2) By using fitness function F(x) =1/f(x) we assign fittest value to each chromosome.
3) New offspring population is created from two parent chromosomes using proposed crossover

operator TCO.

4) Mutation is applied if required.
5) Repeat steps 3 and 4 until we get an optimal solution to the problem.

Below we illustrate our method with an example.

A) Chromosome Design

To solve TSP using GA, at first we need to represent population. In population each chromosome is

represented as a sequence of nodes, where each node represent a city and after travelling all nodes

once; need to reach the starting node. If the TSP has 6 cities then the chromosome length will be 5.The
cost of travelling between two cities is represented as a cost matrix which we use in our paper. Figure

2 shows a sample chromosome for a problem with 6 cities:

B) Fitness Function

The TSP problem is solved by the GA which is used for maximization problem. We need a fitness

function that define by, F(x) =1/f(x)

USING GA WITH TRIPLE CROSSOVER TO SOLVE TSP Akter

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 197

Where, f(x) is the objective function which computes the total cost of a tour represented by a string.

Chromosomes are selected with a probability included with their fitness value and then copied into

next generation. This process is done in selection process. Highly fittest chromosomes can prevent

losing the best found solution.

C) Crossover operator

New solution space is made by creating new offspring’s from earlier ones. Then we applied our
crossover operator in new solution space. At first, two parents are randomly selected. Then we search

for two crossover point, one is from starting and another is from ending side. Then we compare and

select the fittest portions from parents. After this, if any duplicate node is found in newly generated
chromosome, replace the node with untouched nodes again by comparing the cost with previous

adjacent node. The algorithm for this newly crossover technique is as follows:

Step 1: Randomly select two parents P1 and P2 and measure their cost. The representation is illustrates
in figure 3.

Figure 1. Flowchart of our proposed method

Figure 2. Chromosome representation

Figure 3. Parent chromosome representation

USING GA WITH TRIPLE CROSSOVER TO SOLVE TSP Akter

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 198

Step 2: Start from the first node of both parents and scan from left to right to check whether there is

any different sequence or not. If found then stop scanning & compare the cost of last two scanned

nodes of both parents and select the fittest one OF (start).

A mismatch is found on 2nd position, so we compare the cost of 4-3(11) and 4-5(59), and select 4-3 as
it gives the minimum cost. OF start: 4-3

Figure 4. Partial chromosome representation of offspring

Step 3: Start from the last node of both parents and repeat step 2 & select the fittest one OF (end).

Now, start from the last node we found an mismatch at 2nd last position so we compare between 1-

2(75) and 7-2(31) and select the lowest one.OFend:7-2

Figure 5. Partial chromosome representation of offspring

Step 4: Select OF (middle) by comparing the cost of the parent’s no scanned middle substrings.
Now we compare middle nodes which are not scanned 5-7-6(cost-132) from P1 and 6-1-5(cost-71)

from P2 and select the minimum one 6-1-5 with 71.

OF middle: 6-1-5.

Figure 6. Final chromosome representation of offspring

Step 5: List out the missing nodes (Mi) from the newly derived immature OF. Replace the duplicate

nodes (Di) with the missing nodes (Mi) from left to right by considering the minimum cost between

their previous adjacent node (Ai).
If (Ai-Di) < (Ai-Mi)

Select Di

Else
Select Mi

Step 6: Finally Derived new Offspring which requires the lowest cost.

To explicit the method, a problem with 7 cities is considered. Cost matrix is included in table I.

Table 1. Portion of a cost matrix

Node 1 2 3 4 5 6 7

1 100 75 99 9 35 63 8

2 51 100 86 46 88 29 20

3 50 5 100 16 28 35 28

4 20 45 11 100 59 53 49

5 86 63 33 65 100 76 72

6 36 53 89 31 21 100 52

7 58 31 43 67 52 60 100

USING GA WITH TRIPLE CROSSOVER TO SOLVE TSP Akter

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 199

3. COMPUTATIONAL RESULT AND DISCUSSION

In this age of modern science we concern with time rather than memory. Our proposed method takes a
number of calculations but less iteration which utilizes memory but saves time. The previous methods

were very good but our proposed method gives optimal solution in less time than the previous

methods.
For comparing the efficiency of the different crossover operators, genetic algorithms using SCX, ERX,

GNX and TCO have been encoded in Visual C++ on a Pentium 4 personal computer with speed 5

GHz and 1GB RAM under MS Windows 7, and for some TSPLIB instances. Initial population is

generated randomly. The following common parameters are selected for the algorithms: population
size is 300, probability of crossover is 1.0 (i.e., 100%), probability of mutation is 0.01 (i.e., 1%), and

maximum of 15,000 generations as the terminating condition. The experiments were performed 8

times for each instance. The solution quality is measured by the percentage of excess above the
optimal solution value reported in TSPLIB website, as given by the formula

𝐸𝑥𝑐𝑒𝑠𝑠(%) =
(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒𝑉𝑎𝑙𝑢𝑒
× 100% (1)

We report percentage of excess of best solution value and average solution value over the optimal

solution value of 10 runs. The table also reports the average time of convergence (in second) by the
algorithms.

Table 2. Summary of the results of different crossover operators for asymmetric TSPLIB

instances

 Opt. ERX GNX SCX TCO

Instance n Sol. Avg Avg Avg Avg

 Time Time Time Time

br17 17 39 2.10 0.26 0.11 0.9

ftv33 34 1286 70.22 7.64 2.25 1.98

ftv35 36 1473 76.39 1.48 9.69 6.92

ftv38 39 1530 160.87 4.03 6.89 7.12

p43 43 5620 213.99 22.33 22.98 20.22

ftv44 45 1613 157.23 18.46 19.22 15.34

ftv47 48 1776 200.70 42.67 25.99 18.10

ry48p 48 14422 185.59 39.33 25.73 27.31

ft53 53 6905 122.75 29.35 36.73 31.11

ftv55 56 1608 328.59 23.74 35.11 35.21

ftv64 65 1839 326.95 91.39 76.56 81.01

ft70 70 38673 561.14 90.13 74.19 73.99

ftv70 71 1950 432.31 135.97 58.69 58.14

kro124p 100 36230 542.57 178.64 142.02 140.01

ftv170 171 2755 526.46 483.21 259.60 248.91

We also measure the performance of different crossover operators for the instances ftv170 and for

some symmetric TSPLIB instances (considering 500 generations). For these instances our proposed
method perform better than the previous methods.

USING GA WITH TRIPLE CROSSOVER TO SOLVE TSP Akter

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 200

4. CONCLUSION AND FUTURE WORK

Solving TSP by Genetic Algorithm is purely depending on the way problem is encoded and which

crossover and mutation technique is used. Here we proposed a new crossover operator to solve TSP
along with other steps of Genetic Algorithm. In comparison with other crossover operator like SCX,

ERX as defined by zakir (2010) our proposed technique shows the best result in terms of times. We

use a local search technique to select initial population. In future we want to find a search technique to
minimize initial population with good quality of chromosomes which can give a better result by

minimizing iteration as well as cost and time.

Figure 7. Performance analysis of different crossover operators for asymmetric TSPLIB

instances

5. REFERENCES

Jun L, Qirui S, MengChu Z, Xianzhong D (1992). A New Multiple Traveling Salesman Problem and

its Genetic Algorithm-based Solution.

C.P. R (1992), Solving Large-scale Travelling Salesperson Problems on Parallel Machines,

Microprocessors and Microsystems 16(3), pp. 149-158.

Zakir H. A (2010). Genetic Algorithm for the TSP using Sequential Constructive Crossover Operator,

International Journal of Biometrics & Bioinformatics (IJBB), Volume (3), Issue (6).

Aybars U, Serdar K, Ali C, Muhammed C, Ali A (2009). Genetic algorithm based solution for TSP on

a sphere, Mathematical and Computational Applications, Vol. 14, No. 3, pp. 219-228.

L. D (1985). Job-shop scheduling with Genetic Algorithms, Proceedings of an International

Conference on Genetic Algorithms and Their Applications, pp. 136-140.

 C. M, J. K, G. C and Y. S (2002). An efficient genetic algorithm for the traveling salesman problem

with precedence constraints, European Journal of Operational Research 140, pp. 606-617.

N.J. R and P.D. S (1995). Formae and variance of fitness, In D. Whitley and M. Vose (Eds.)

Foundations of Genetic Algorithms 3, Morgan Kaufmann, San Mateo, CA, pp. 51-72.

D.E. G (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley,

New York.

0

100

200

300

400

500

600

ERX Avg Time

GNX Avg Time

SCX Avg Time

TCO Avg Time

