

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 130

Proc. 1st International Conference on

Machine Learning and Data Engineering (iCMLDE2017)

20-22 Nov 2017, Sydney, Australia

ISBN: 978-0-6480147-3-7

 The Optimization of Distributed Computed SVM by KNN

Lizelong
1
 and Yangcheng

2

1
Zhejiang university, Hangzhou, China

2
Zhejiang university city college, Hangzhou, China

Corresponding author’s E-mail: yangc@zucc.edu.cn

Abstract

Support Vector Machine is one of the most popular classification algorithms that is based on

statistics learning. SVM has many advantages such as over-fitting and disaster effect. One of the

challenges for SVM is it cannot fit for large samples. When we train a model by isolated SVM for a

large set of data, the execution time to train the model is extremely high and often unacceptable.

To solve this issue we propose a Cascade SVM algorithm, which is a parallel algorithm with a

good effect that can sharply reduce the cost of training time. We split the large-scale dataset into

several small-scale datasets and concurrently iterate those clusters in order to increase its train

speed. Therefore, the cost is further reduced. However, it produces lower accuracy compared to

isolated SVM. To increase the accuracy, we use k nearest neighbour (KNN) algorithm. If the distance

between a data point and hyperplane is less than the threshold value when SVM is predicting the test

data, we accept the prediction result. Otherwise we consider randomly combine the KNN’s result. In

this way, we train our model efficiently. Therefore, our proposed model will increase the accuracy and

will reduce the prediction speed obviously.

Keywords: Cascade SVM, Parallelization, KNN

1. INTRODUCTION

As the progress of time, the speed of data growth has increased. In such an era of big data, large

samples of data can’t be processed by the conventional classification algorithms in an acceptable
scope of time, so we need to improve these algorithms.

Support Vector Machine (SVM) is one of the most popular classification algorithms mentioned

by P. H. Chen, C. J. Lin, B. sSchölkopf (2005) and C. J. C. Burges (1998). And it is based on statistics
learning by V. N. Vapnik (1999). SVM has many advantages such as over-fitting and disaster effect.

But one of the challenges for SVM is that it cannot fit for large samples. And k nearest neighbor

(KNN), supposed by TM Cover and PE Hart (1967), can use a shorter time to train samples with high

accuracy. However its prediction calculation costs a large amount of time, and it is prone to classify
the data into wrong categories when it has few train samples.

Therefore, this paper proposes a new parallel SVM algorithm which is based on the algorithm of

Cascade SVM from Hans Peter Graf (2005). It has high concurrency than before, and by using KNN
to optimize the result, the parallel can avoid the accuracy reduced problem about the parallel SVM

algorithm.

The Optimization of Distributed Computed SVM by KNN Lizelong

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017)

Page 131

2. RELATED WORK

2.1. SVM algorithm

Support Vector Machine algorithm is one of the powerful classification algorithms. The basic

idea of SVM is to find an optimal separating hyperplane by Peter Harrington (2012), it not only can
split different kinds of data, but it can also ensure that the interval is the largest. Figures 1 and 2 show

that both of the hyperplanes can split different kinds of data, but the min interval from sample point to

hyperplane, shown in Figure 2, is the largest. So, this hyperplane is the optimal separating hyperplane,

and the sample points at the separated boundary are called support vectors.

Figure 1. Optimal Hyperplane with Largest Interval

Figure 2. Normal Hyperplane without Largest Interval

Now we assume the training sample is xi, the prediction sample is yi, and w·x+b=0 is the classify
hyperplane. If xi meet |w·x+b|≥1, then xi is support vector. Optimal hyperplane must meet the equation

(1)

 (1)

Then the classify interval is:

 (2)

To get the max interval, we should make ||w|| min, so we can compute the min of equation (3)

The Optimization of Distributed Computed SVM by KNN Lizelong

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017)

Page 132

with constraint condition yi [(w·xi)+b] ≥1

 (3)

Therefore, when the sample is linearly inseparable, we should use a non-negative slack variable

Gamma and a positive penalty parameter C. If the sample is nonlinearity, we should use kernel

function to transform the sample into a high-dimensional linearly separable characteristic space. After

that, we can find the optimal classify hyperplane.

2.2. KNN algorithm

The main idea of K Nearest Neighbor (KNN) algorithm is to compute the distance between test

samples and train samples and finding the nearest k neighbors. One of the distance is Euclidean

distance, just as equation (4).

𝐝(𝐱, 𝐲) = √∑ (𝒙𝒊 − 𝒚𝒊)
𝟐𝒏

𝒊=𝟏 (4)

In the KNN algorithm, all the neighbors are correctly classified. The method of classifying only

bases on the most adjacent one or a few sample’s category. When the train samples are not balances,

such as when a category of a sample’s size is very large and other types of a sample size is very small,

it can lead to the large size classify result when we input a new test sample.

2.3. Cascade SVM algorithm

The cascade SVM is an optimized SVM which uses parallel for accelerating SVMs. Because the

support vectors are just a small part of the training sample, we can split the large dataset into a lot of

sub datasets. Then we can train the sub dataset to improve the whole training speed. The goal of SVM

training is to eliminate the redundancy support vectors. When all training processes eliminate all the

redundancy support vectors surrounding sub datasets, we can finally get the global support vectors.

Figure 3. Structure of Cascade SVM

file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/

The Optimization of Distributed Computed SVM by KNN Lizelong

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017)

Page 133

Based on the thought of eliminating the non-support vectors in every iteration, Figure 2 shows

the TD and the arrows between layers which represent the training samples and process of SVM

training respectively. In the first layer, we split the original sample into 8 TDs, then we used the

Sequential Minimal Optimization (SMO)

algorithm. The SMO algorithm, published by JC Platt

(1999), can break down the original, complicated and large optimal problems into simpler ones, to

train TDs and get support vectors. We then merged the support vectors into 4 parts of SV as the next

layer’s TDs. In the second layer, we repeat the first layer operation. Repeating this process we finally

get the final training sample TD15 in this iteration. We then judge whether the TD15 can fit the

threshold value. If it does not fit, we should repeat the above-mentioned process until it fits the

requirement.

Through the above-mentioned approach, cascade SVM can sharply increase the training speed

and get an effective model.

3. METHODS

Cascade SVM uses distributed systems to improve training speed, and set the threshold for
iteration to improve the prediction accuracy. Therefore it can indeed solve the low speed of isolated

SVMs handling the big dataset to some degree.

However it still has some serious problems:
1) It is done by binary merge, so the concurrent thread number will dramatically decrease.

2) As the algorithm runs, because of the invalid support vectors that are removed, it cannot

effectively reduce the support vectors like the begin phase. So, the accuracy will almost stop

to increase.
3) In the later algorithm phase, the number of merged support vectors will be larger, so the

training speed will be slower and slower.

Therefore, we use a new method to handle these problems. We give up the iteration to get higher

efficiency and increase the accuracy. The algorithm is as follows:

Figure 4. Structure of Distributed Computed SVM by KNN

Before the training phase, we shuffled the original sample in order to train different sizes of the

subset samples and get their accuracy. This provided an appropriate block size named N. We set the
threshold value P (less than or equal to the computer amounts of distributed system) to improve the

train speed.

In the training phase, we split the original sample into N parts and used SMO algorithm to train
every sub dataset. After that we binary merged the support vectors obtained from training. Finally, we

looped the process until remaining P support vectors blocks. At this moment, the P computers saved

different support vector blocks respectively.

In the prediction phase, we sent the sample for prediction to the P computers and got the P
prediction answers. Then the P computers sent results to the center computer to merge the results. We

set a threshold value R which can be chosen from 1/2 to 3/4. For the same sample point, if the number

of common result were more than R, we accepted the result. If not, we used KNN to predict the

The Optimization of Distributed Computed SVM by KNN Lizelong

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017)

Page 134

sample point. If the result obtained by KNN existed in the SVM results, we also accepted it.
Otherwise we randomly accepted the KNN results in a 50% ratio, with the other 50% ratio split into

SVM result respectively.

4. EXPERIMENTS

4.1. Experiment Environment

Because there was not enough hardware, we used a single computer which has an Intel i7

6700HQ CPU, 16GB memory and 1TB hard disk.

For the software environment, we used Anaconda 4.4 which is based on Python 3.6, and we used
Scikit-learning 0.18.1 which is a Python machine learning package and integrates the LibSVM

proposed by Chang Chih-Chung, Lin Chih-Jen and which has reference site link is:

http://www.csie.ntu.edu.tw/~cjlin/ (2017-10-10).
The Experimental data is the Covtype dataset provided by UCI Machine Learning Repository

with site link address: http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/ (2017-10-

10), the dataset has 7 class, 54 attribute and 581012 sample point.

4.2. Experiment Environment

When the experiment began, we shuffled the sample and split the sample into two parts. The part

which had 90% sample points is the training sample, and the other part is the test sample. In the
experiment, the K parameter for KNN is 5. For the SVM part, we used RBF kernel function. The C is

2.46 and the gamma is 0.66. Because the experiment hardware’s CPU is 4 cores, we used 8 threads to

simulate 8 computers and we set the parameter P on 8, R on 0.5 and the block size was 6000.
Due to the lack of environment hardware, we used multithreading to simulate the distributed

system. In order to make the experimental results effective and comprehensive, we randomly

extracted 5000, 10000, 25000, 50000, 75000, 100000 sub dataset from the original sample. We then
compared the difference between the isolated SVM, Cascade SVM and the SVM we proposed.

Figure 5 and6 show the comparison speed and accuracy between the isolated SVM, Cascade

SVM and the SVM we proposed.

Figure 5. Train Speed Comparison

As can be seen in Figure 5, beginning threads start costs a lot of time and the cascade SVM costs

more time than isolated SVM. As the sample size grows, the threads start cost becomes a small

http://www.csie.ntu.edu.tw/~cjlin/
http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/

The Optimization of Distributed Computed SVM by KNN Lizelong

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017)

Page 135

fraction of the sum time cost. Therefore, the cascade SVM costs less time than the isolate SVM at the
end. However, the custom SVM time cost is always less than half of the isolated SVM time cost or the

cascade SVM time cost. As a result, the custom SVM have good time performance. But due to the

program running on a single computer, the concurrent cost about transfer files and inter-node

communication cannot be shown in this figure.

Figure 6. Prediction Accuracy Comparison

When the custom SVM deals with small train data scale, the split train blocks are too small to
have a good prediction performance. Chart 1 shows that the custom SVM base on KNN algorithm

prediction accuracy is similar to KNN’s prediction accuracy. Figure 6 shows that when the train data

scale grows, the prediction accuracy of KNN algorithm will be obviously increased. Therefore, the
accuracy is similar to the isolated SVM and Cascade SVM in the end. The accuracy of custom SVM

can be guaranteed.

Figure 5 and 6 shows that custom SVM has similar accuracy and costs less than half, compared
with other SVM. Therefore custom SVM has good effect.

Chart 1. Prediction Accuracy Comparison between KNN and Custom SVM

 5000 10000 15000 20000 25000 50000 75000 100000

KNN 69.61 71.10 73.82 75.05 77.16 80.32 82.74 83.49

Custom SVM 68.73 71.38 74.61 75.59 76.86 79.73 81.76 82.73

From chart 2, we can see that most of the time uses SVM rather than KNN, and the ratio we use

KNN algorithm will fall down. Therefore, the time cost can’t grow significantly due to using KNN.

And because the predicting functions run in different threads, the time cost in prediction phase is close
to the isolated SVM.

Chart 2. Use KNN Ratio in Custom SVM

 5000 10000 15000 20000 25000 50000 75000 100000

Ratio (%) 19.8 17.1 17.1 15.5 16.08 12.38 11.41 9.85

As mentioned above, this algorithm has a more satisfactory effect than others.

5. CONCLUSIONS

In this work, we propose an optimized distributed computed SVM which is based on KNN. For

Cascade SVM, this method aims at handling the decreasing concurrent and low efficiency in

convergence and iterative phase. We eliminate the iterative phase to avoid low efficiency, and set a

threshold value to increase the concurrent. Furthermore, we set an acceptance threshold value to

file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/

The Optimization of Distributed Computed SVM by KNN Lizelong

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017)

Page 136

identify the result and use KNN algorithm as the assistant algorithm to increase the accuracy further.

In comparison to other algorithms, experiments show that the method has better speed and

similar accuracy.

Further study can use heuristic algorithm to reduce the dimension of sample and use better

cascade architecture. And it can use Map-Reduce supposed by R Mmel (2008) via Hadoop, site by

link address: http://hadoop.apache.org/ (2017-10-10), for more convenient use.

6. ACKNOWLEDGMENTS

This work was supported by Zhejiang University Research Grant in 2017.

7. REFERENCE

P. H. Chen, C. J. Lin, and B. Schölkopf (2005). A tutorial on ν-support vector machines, Appl. Stoch.
Models. Bus. Ind. 2005, 21, PP.111-136.

C. J. C. Burges (1998). A tutorial on Support Vector Machines for pattern recognition, Data Min.
Knowl. Discov. 1998, 2, PP.121-167.

V. N. Vapnik (1999). An overview of statistical learning theory, IEEE Trans. Neural Netw. 1999, 10,
PP.988-999.

TM Cover, PE Hart (1967). Nearest neighbor pattern classification[J]. IEEE Transactions on
Information Theory, 1967, 13(1), PP. 21-27.

Hans Peter Graf, Eric Cosatto, Leon Bottou (2005). Parallel Support Vector Machines: The Caseade

SVM

Peter Harrington (2012). Machine Learning in Action, Manning Pubns Co, 2012

Vladimir N. Vapnik (1998). Statistical Learning Theory, Wiley-Interscience, 1998

JC Platt (1999). Fast Training of support Vector Machines Using Sequential Minimal Optimization[M]
MIT Press, PP.185-208

Scikit-learn. http://scikit-learn.org/stable/

Chang Chih-Chung (2011), Lin Chih-Jen. LIBSVM: a Library for Support Vector Machine
[
J]. ACM,

2011(2), PP.1-27

Libsvm. http://www.csie.ntu.edu.tw/~cjlin/

UCI Machine Learning Repository, Covertype Data Set. http://archive.ics.uci.edu/ml/machine-learning-
databases/covtype/

R Mmel (2008). Google's MapReduce programming model – Revisited. Science of Computer
Programming, 2008, 70 (1), PP.1-30

Hadoop. http://hadoop.apache.org/

file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
file:///D:/Program%20Files/Youdao/Dict/7.2.0.0511/resultui/dict/
http://hadoop.apache.org/
http://book.jd.com/publish/Manning%20Pubns%20Co_1.html
http://www.csie.ntu.edu.tw/~cjlin/
http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/
http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/
http://hadoop.apache.org/

