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Abstract 

This paper proposes a user-friendly panorama image stitching system with a real-time preview. 

Previous approaches do not have a choice but to the select source images while the user predicts the 

stitching results through trial and error. Our contribution shows a real-time preview of the stitching 
results based on the multi-threaded tracking and the blending system. It can help the user easily 

generate a desired panorama image such as a wide-angle view or building. In our system, the object 

image designated as an initial frame is tracked to generate a real-time preview. We evaluated the 
accuracy of the proposed tracking method as compared with a scale-invariant feature transform, such 

as speeded-up robust features, and oriented FAST, rotated BRIEF. Our experiment results show that 

our approach can robustly track the object image and provide quality real-time preview images. 
 

Keywords: image-stitching, multi-thread, ORB. 

1. INTRODUCTION 

Panorama image stitching is a well-known method for creating a wide-angle view image with limited 

tools or environments. Previous approaches have been concerned with the quality of the panorama 

image stitching result or fully automated systems as suggested by Cha (2012) and Zhang (2014). And 
they select the source images, while users predict the stitching results using a guideline for helping 

capture the source image. To make a view of a user-desired shape, trial and error is required. In this 

paper, we describe a multi-threaded system based on invariant features for panorama image stitching 
with a real-time preview. Our contribution is implementing a user-friendly and real-time based 

stitching system. The predicted stitching result can be shown beforehand in real-time according to the 

user’s controls, as shown in Figure 1(a). This can help the user easily generate a desired panorama 

image such as a large land-view or building image. The proposed system is composed of detection and 
blending parts. The blending part is difficult to execute in real time, and thus we configured a real-

time executable multi-threaded system. We hope that our multi-threaded approach will be useful to 

users unaccustomed to such systems.  
The rest of this paper is structured as follows. In Section 2, we describe the proposed method in detail 

in the context of a multi-thread based system. In Section 3, we describe our experiment results. 

Finally, in Section 4, we provide some concluding remarks regarding our proposal. 
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                                                   (a)                                                                       (b) 

Figure 1. An example of panorama image stitching: (a) real-time preview image and (b) stitching 

result 

2. MULTI-THREAD SYSTEM 

Our proposed system is implemented as a multi-threaded system to achieve a real-time performance as 
suggested by Lee and Hollerer (2009). It can be divided into two threads: the tracking thread tracks the 

objet image, and the blending thread blends the user-selected source images. The tracking thread is the 

main thread and is conducted for every frame. The blending thread using an invariant feature based 

panorama image stitching approach incurs significant computational costs. It can only be applied when 
the user selects a source image for blending. Prior to the present study, we assume that we calibrate the 

camera, and its captured image is un-distorted through Zhang’s camera calibration as suggested by 

Zhang (2000).  

2.1. Tracking Thread 

For the tracking, we use such concepts as an object and scene image. In the initial frame, the user sets 

the object image for tracking the target. The tracking thread tracks the object image in consecutive 

frames after the set-up of the initial frame. Our approach uses oriented FAST, rotated BRIEF (ORB) 

as suggested by Rublee et al (2011) for detecting and matching the features. ORB is a well-known 

object tracking technique that is rotation invariant and resistant to noise. Moreover, its computational 

cost is low for real-time applications. However, when using ORB alone, frequent tracking failures 

occur. In the proposed method, the object features 𝑝𝑜𝑏𝑗  are first detected in an object image using 

ORB in the initial frame. In addition, we set 𝑝𝑜𝑏𝑗  to object features 𝑙𝑜𝑏𝑗  for the pyramidal Lucas-

Kanade tracker (LKT) as suggested by Bouguet (2001). In later frames, 𝑙𝑜𝑏𝑗  is tracked as shown in 

Table 1.  

Table 1.  Pseudocode for the tracking thread 
 

FUNCTION: TRACK( ) 
Detect object features 𝑝𝑜𝑏𝑗  in the initial frame by ORB 
Set 𝑝𝑜𝑏𝑗  to LKT object features 𝑙𝑜𝑏𝑗0  
i = 0; 
BEGINLOOP: 

Track 𝑙𝑜𝑏𝑗 𝑖 by LKT, its tracked results are 𝑙𝑖 
Outlier filtering with 𝑙𝑜𝑏𝑗 𝑖 and 𝑙𝑖. 
𝑛 = number of 𝑙𝑜𝑏𝑗 𝑖 
IF: 𝑛 < 8 

Detect scene features 𝑝𝑖  by ORB 
Match 𝑝𝑜𝑏𝑗  and 𝑝𝑖 , 𝑚

𝑜𝑏𝑗
𝑖 and 𝑚𝑖 is matched features 

FOR: each feature 𝑘 ∈ 𝑚𝑜𝑏𝑗
𝑖,𝑘  

FOR: each feature 𝑗 ∈ 𝑙𝑜𝑏𝑗 𝑖,𝑗  
IF NOT: check same feature (𝑙𝑜𝑏𝑗 𝑖,𝑗 , 𝑚

𝑜𝑏𝑗
𝑖,𝑘) 

Set (𝑚𝑜𝑏𝑗
𝑖,𝑘 , 𝑚𝑖,𝑘) to (𝑙𝑜𝑏𝑗 𝑖,𝑛 , 𝑙𝑖,𝑛) 

𝑛 = 𝑛 + 1 
𝑖 = 𝑖 + 1 

ENDLOOP 
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A failed match leads to a preview failure. For robust tracking, we use outlier filtering as suggested by 

Lee et al (2015) for choosing the good features to track. As a result, if the number of inliers of 𝑙𝑖 is 

lower than eight, which is degree of freedom for a perspective projection transformation, detection of 

the ORB features is conducted to add more features for robust tracking. The matching results of 𝑚𝑜𝑏𝑗
𝑖  

and 𝑚𝑖 in the i-th frame are checked to avoid duplication with features already being tracked. If newly 

detected features are not tracked, they are added to 𝑙𝑜𝑏𝑗𝑖 and 𝑙𝑖. A warped image is generated as a 

tracking result in every frame for a real-time preview. To warp the image, a perspective projection 

matrix 𝐇 is necessary. 𝐇 is calculated based on the relationship between the object features 𝑙𝑜𝑏𝑗𝑖 and 

the scene image features 𝑙𝑖 in the i-th frame with a random sample consensus (RANSAC) as suggested 

by Fischler and Robert (1981). 

Tracking reliability depends on the result of computing a perspective projection matrix between an 
object and the scene image features. Failed tracking causes a failure in computing a perspective 

projection matrix. In addition, a failed visualization hinders the concentration of the users. In this 

paper, we use outlier filtering for robust tracking. The proposed outlier filtering classifies the detected 
features into inliers and outliers based on the relationship of the features between an object image and 

a scene image as shown Figure 2. 

 

 
Figure 2. Compute Euclidean distances for outlier filtering: (a) detected features in the object 

image, (b) tracked features in the scene image, and (c) if a transformed feature in the scene 

image is out of range, it is an outlier. 

 

Table 2.  Outlier filtering for classifying into inliers and outliers 
 

1) Compute a perspective projection matrix 𝐇 from between features 𝑙𝑜𝑏𝑗𝑖 in an 

object and 𝑙𝑖 in the i-th scene image using RANSAC. 

2) Compute Euclidean distance 𝑑𝑖,𝑗 between the j-th feature 𝑙𝑖,𝑗 and a transformed 

feature 𝑙𝑡𝑖,𝑗 = 𝐇 ∙ 𝑙𝑜𝑏𝑗𝑖,𝑗. 

3) If 𝑑𝑖,𝑗 is smaller than a case-specific threshold, it is an inlier. In other cases, they 

are outliers. 

 

The main issue is determining the RANSAC distance threshold according to the execution 

environment for outlier filtering as suggested by Fischler and Robert (1981). An adaptive RANSAC 
threshold decision enables a case-specific threshold to be determined for each specific frame. In this 

paper, we update the threshold for every 100 frames. 
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Table 3.  Adaptive RANSAC distance threshold decision 
 

1) Set the initial threshold to 𝑡0 = 𝑠 100⁄ , where the scale 𝑠 is the length of the 

diagonal of the camera frame. 

2) Euclidean distances 𝑑𝑖,𝑗 between 𝑙𝑖,𝑗  and 𝑙𝑡𝑖,𝑗  are computed until the n-th frame. 

In the n-th frame, 𝑑𝑗𝑚𝑒𝑎𝑛
=

 

n
∑ 𝑑𝑖,𝑗
n
𝑖=  is calculated from each j-th feature . 

3) If 𝑑𝑗𝑚𝑒𝑎𝑛
 is twice the value of 𝑑𝑚𝑒𝑎𝑛 =

 

𝑛
∑ 𝑑𝑗𝑚𝑒𝑎𝑛
𝑛
𝑗= , 𝑑𝑗𝑚𝑒𝑎𝑛

 is removed to 

exclude impulse errors. 

4) Update the case specific threshold 𝑡  through 𝑑𝑚𝑒𝑎𝑛 , the dataset is computed 

using Otsu threshold decision method as suggested by Otsu (1975). 

5) At every n-th frame interval, steps 2) through 4) are repeated. 

2.2. Blending Thread 

The blending thread begins when the user selects a scene image to be stitched with the object image in 

the tracking thread. In this work, we use automatic panoramic image stitching with invariant features 
as suggested by Brown and Lowe (2007). This method uses invariant local features to find matches 

between all of the images. A probabilistic model verifies the image matches in unordered image sets, 

and stitches them automatically. Figure 3 shows the procedural flowchart and conceptual time 

sequence for each process. The first step is to detect and match the scale-invariant feature transform 
(SIFT) features as suggested by Lowe (2004) in all image sources, which are the selected scene 

images and the object image. In addition, we find the connected components of the image matches. 

For each connected component, a bundle adjustment as suggested by Triggs et al (1999) is performed 
to estimate the camera position, which is difficult to do in real-time. Therefore, we create a new thread 

for blending. When the blending thread is complete, the stitching result is updated as the object image. 

ORB features and descriptors are extracted in the new object image for subsequent tracking. Finally, 

the stitching result is reflected in the real-time preview in the tracking thread. 

 
Figure 3. Procedural flowchart and conceptual time sequence for each process. In this figure, a, 

b, c, and d are as follows: (a) set the initial frame, (b) select the scene image, (c) update the object 

image, and (d) apply the blend result to the real-time preview image. 

 

 
                       (a)                                                       (b)                                                         (c) 
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(d)                                                       (e)                                                         (f) 

 
(g) 

Figure 4. Example of gradual steps for generating a panorama image using our approach with a 

real-time preview: (a) the first object image, (b) a source image, (c) a real-time preview by (a) 

and (b), (d) the stitching result of (c) and the second object image, (e) a source image, (f) a real-

time preview by (d) and (e), and (g) the final stitching result of (f). 

3. EXPERIMENT 

The experiments were conducted on a desktop computer with a 4 GHz Intel® core™ i7 CPU using a 

USB 2.0 camera (Logitech webcam C920). The camera was calibrated using Zhang’s calibration 
method as suggested by Zhang (2000), and its captured images are undistorted to remove the lens 

distortion. Figure 4 shows an example of the gradual steps used for generating a panorama image by 

our proposed method with a real-time preview. The real-time preview helps the user generate a user-
desired shape. Table 4 shows the process time per frame of each step in our multi-threaded system. 

The time depends on the camera resolution. For real-time execution with a camera based on 30 fps, the 

entire process has to be finished within 33ms. Thus, we use a resolution of 640 × 480 for real-time 

previews in the tracking thread. The final panorama image will be generated into a 1920 × 1080 
resolution, which we already selected for the source images. 

 
Table 4.  Comparison of reliability in each tracking approach. The 

RMSE is the mean value of the x, y, z-axes. 
 

 
Time per frame (ms) 

640×480 1280×720 1920×1080 

Tracking thread 12.4 34.71 87.18 

Capture & non-distortion 5.07 17.61 37.4 

Optical flow tracking 3.8 7.91 13.32 

Calculate H 0.82 1.15 3.85 

Outlier filtering 0.03 0.04 0.05 

Generate preview image 2.68 8.0 32.56 

Blending thread 1662.33 2412.4 5074.33 

Estimate transform 743.5 1096.0 2467.5 

Compose panorama 878.0 1227.4 2449.67 

Update the object image 40.83 89.0 157.17 

 
 

Table 5.  Comparison of reliability in each tracking 

approach. The RMSE is the mean value of the x, y, z-axes. 
 

Index SIFT SURF ORB Proposed 

RMSE 
(mm) 

18.37 39.34 111.39 4.16 
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In another experiment, we examined the accuracy of the proposed tracking method. We use ORB 

features for detection and matching. LKT tracks the detected ORB features with outlier filtering in the 
tracking thread. In our experiments, camera input images were captured while the camera remained 

fixed. We generate occlusions by hand or through changes in illumination. The root mean square 

deviation (RMSE) is computed between the camera pose in the first frame without an occlusion and 
camera poses in the other frames according to SIFT, the speed up robust feature (SURF) as suggested 

by Bay et al (2006), ORB, and our proposed approach. Because the camera is fixed, the closer the 

RMSE is to zero, the more stable it is. A camera pose is the fourth column vector of the camera 

extrinsic matrix using Equation 1. The experiment results illustrate that the proposed method with 
outlier filtering achieves better results than the other cases, as shown in Table 5. 

 

𝑝𝑖 = [
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [𝑟 𝑟 𝑟 (𝑥, 𝑦, 𝑧, 1)T] ∙ 𝑝𝑜𝑏𝑗  (1) 

4. CONCLUSION 

This paper presented a user-friendly panorama image stitching approach with a real-time preview. The 

tracking and blending threads are multi-threaded for a real-time performance. A prediction of the 
panorama results can be shown through the selection of the scene image in real-time. Therefore, a user 

can more easily generate a panorama image than in off-line based approaches. To evaluate the 

accuracy of the proposed tracking method, we compared it with SIFT, SURF, and ORB. The 
experiment results show that our approach can robustly track an object image and provide quality 

preview images. We believe that our proposed multi-threaded approach can be useful to users who are 

unaccustomed to panorama image stitching applications. 
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