

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE2017) Page 55

Proc. 1st International Conference on

Machine Learning and Data Engineering (iCMLDE2017)

20-22 Nov 2017, Sydney, Australia

ISBN: 978-0-6480147-3-7

Real-Time Panorama Image Stitching based on Multi-Threaded

System

Ahyun Lee and Insung Jang

IoT Research Division, Electronics and Telecommunications Research Institute (ETRI),

Daejeon, South Korea

Corresponding author’s E-mail: ahyun@etri.re.kr

Abstract

This paper proposes a user-friendly panorama image stitching system with a real-time preview.

Previous approaches do not have a choice but to the select source images while the user predicts the

stitching results through trial and error. Our contribution shows a real-time preview of the stitching
results based on the multi-threaded tracking and the blending system. It can help the user easily

generate a desired panorama image such as a wide-angle view or building. In our system, the object

image designated as an initial frame is tracked to generate a real-time preview. We evaluated the
accuracy of the proposed tracking method as compared with a scale-invariant feature transform, such

as speeded-up robust features, and oriented FAST, rotated BRIEF. Our experiment results show that

our approach can robustly track the object image and provide quality real-time preview images.

Keywords: image-stitching, multi-thread, ORB.

1. INTRODUCTION

Panorama image stitching is a well-known method for creating a wide-angle view image with limited

tools or environments. Previous approaches have been concerned with the quality of the panorama

image stitching result or fully automated systems as suggested by Cha (2012) and Zhang (2014). And
they select the source images, while users predict the stitching results using a guideline for helping

capture the source image. To make a view of a user-desired shape, trial and error is required. In this

paper, we describe a multi-threaded system based on invariant features for panorama image stitching
with a real-time preview. Our contribution is implementing a user-friendly and real-time based

stitching system. The predicted stitching result can be shown beforehand in real-time according to the

user’s controls, as shown in Figure 1(a). This can help the user easily generate a desired panorama

image such as a large land-view or building image. The proposed system is composed of detection and
blending parts. The blending part is difficult to execute in real time, and thus we configured a real-

time executable multi-threaded system. We hope that our multi-threaded approach will be useful to

users unaccustomed to such systems.
The rest of this paper is structured as follows. In Section 2, we describe the proposed method in detail

in the context of a multi-thread based system. In Section 3, we describe our experiment results.

Finally, in Section 4, we provide some concluding remarks regarding our proposal.

Real-Time Panorama Image Stitching based on Multi-Threaded System Lee

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) Page 56

 (a) (b)

Figure 1. An example of panorama image stitching: (a) real-time preview image and (b) stitching

result

2. MULTI-THREAD SYSTEM

Our proposed system is implemented as a multi-threaded system to achieve a real-time performance as
suggested by Lee and Hollerer (2009). It can be divided into two threads: the tracking thread tracks the

objet image, and the blending thread blends the user-selected source images. The tracking thread is the

main thread and is conducted for every frame. The blending thread using an invariant feature based

panorama image stitching approach incurs significant computational costs. It can only be applied when
the user selects a source image for blending. Prior to the present study, we assume that we calibrate the

camera, and its captured image is un-distorted through Zhang’s camera calibration as suggested by

Zhang (2000).

2.1. Tracking Thread

For the tracking, we use such concepts as an object and scene image. In the initial frame, the user sets

the object image for tracking the target. The tracking thread tracks the object image in consecutive

frames after the set-up of the initial frame. Our approach uses oriented FAST, rotated BRIEF (ORB)

as suggested by Rublee et al (2011) for detecting and matching the features. ORB is a well-known

object tracking technique that is rotation invariant and resistant to noise. Moreover, its computational

cost is low for real-time applications. However, when using ORB alone, frequent tracking failures

occur. In the proposed method, the object features 𝑝𝑜𝑏𝑗 are first detected in an object image using

ORB in the initial frame. In addition, we set 𝑝𝑜𝑏𝑗 to object features 𝑙𝑜𝑏𝑗 for the pyramidal Lucas-

Kanade tracker (LKT) as suggested by Bouguet (2001). In later frames, 𝑙𝑜𝑏𝑗 is tracked as shown in

Table 1.

Table 1. Pseudocode for the tracking thread

FUNCTION: TRACK()
Detect object features 𝑝𝑜𝑏𝑗 in the initial frame by ORB
Set 𝑝𝑜𝑏𝑗 to LKT object features 𝑙𝑜𝑏𝑗0
i = 0;
BEGINLOOP:

Track 𝑙𝑜𝑏𝑗 𝑖 by LKT, its tracked results are 𝑙𝑖
Outlier filtering with 𝑙𝑜𝑏𝑗 𝑖 and 𝑙𝑖.
𝑛 = number of 𝑙𝑜𝑏𝑗 𝑖
IF: 𝑛 < 8

Detect scene features 𝑝𝑖 by ORB
Match 𝑝𝑜𝑏𝑗 and 𝑝𝑖 , 𝑚

𝑜𝑏𝑗
𝑖 and 𝑚𝑖 is matched features

FOR: each feature 𝑘 ∈ 𝑚𝑜𝑏𝑗
𝑖,𝑘

FOR: each feature 𝑗 ∈ 𝑙𝑜𝑏𝑗 𝑖,𝑗
IF NOT: check same feature (𝑙𝑜𝑏𝑗 𝑖,𝑗 , 𝑚

𝑜𝑏𝑗
𝑖,𝑘)

Set (𝑚𝑜𝑏𝑗
𝑖,𝑘 , 𝑚𝑖,𝑘) to (𝑙𝑜𝑏𝑗 𝑖,𝑛 , 𝑙𝑖,𝑛)

𝑛 = 𝑛 + 1
𝑖 = 𝑖 + 1

ENDLOOP

Real-Time Panorama Image Stitching based on Multi-Threaded System Lee

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) Page 57

A failed match leads to a preview failure. For robust tracking, we use outlier filtering as suggested by

Lee et al (2015) for choosing the good features to track. As a result, if the number of inliers of 𝑙𝑖 is

lower than eight, which is degree of freedom for a perspective projection transformation, detection of

the ORB features is conducted to add more features for robust tracking. The matching results of 𝑚𝑜𝑏𝑗
𝑖

and 𝑚𝑖 in the i-th frame are checked to avoid duplication with features already being tracked. If newly

detected features are not tracked, they are added to 𝑙𝑜𝑏𝑗𝑖 and 𝑙𝑖. A warped image is generated as a

tracking result in every frame for a real-time preview. To warp the image, a perspective projection

matrix 𝐇 is necessary. 𝐇 is calculated based on the relationship between the object features 𝑙𝑜𝑏𝑗𝑖 and

the scene image features 𝑙𝑖 in the i-th frame with a random sample consensus (RANSAC) as suggested

by Fischler and Robert (1981).

Tracking reliability depends on the result of computing a perspective projection matrix between an
object and the scene image features. Failed tracking causes a failure in computing a perspective

projection matrix. In addition, a failed visualization hinders the concentration of the users. In this

paper, we use outlier filtering for robust tracking. The proposed outlier filtering classifies the detected
features into inliers and outliers based on the relationship of the features between an object image and

a scene image as shown Figure 2.

Figure 2. Compute Euclidean distances for outlier filtering: (a) detected features in the object

image, (b) tracked features in the scene image, and (c) if a transformed feature in the scene

image is out of range, it is an outlier.

Table 2. Outlier filtering for classifying into inliers and outliers

1) Compute a perspective projection matrix 𝐇 from between features 𝑙𝑜𝑏𝑗𝑖 in an

object and 𝑙𝑖 in the i-th scene image using RANSAC.

2) Compute Euclidean distance 𝑑𝑖,𝑗 between the j-th feature 𝑙𝑖,𝑗 and a transformed

feature 𝑙𝑡𝑖,𝑗 = 𝐇 ∙ 𝑙𝑜𝑏𝑗𝑖,𝑗.

3) If 𝑑𝑖,𝑗 is smaller than a case-specific threshold, it is an inlier. In other cases, they

are outliers.

The main issue is determining the RANSAC distance threshold according to the execution

environment for outlier filtering as suggested by Fischler and Robert (1981). An adaptive RANSAC
threshold decision enables a case-specific threshold to be determined for each specific frame. In this

paper, we update the threshold for every 100 frames.

(a) (b)

 (c)

𝑙𝑜𝑏𝑗0 𝑙0
𝑙𝑜𝑏𝑗

𝑙𝑜𝑏𝑗 𝑙𝑜𝑏𝑗

𝑙𝑜𝑏𝑗

𝑙

𝑙
𝑙

𝑙

𝑙

𝑙

𝑙

𝑙

outliers

inliers

threshold

𝑙𝑡0

𝑙𝑡

𝑙𝑡

𝑙𝑡

𝑙𝑡

𝑙0

Real-Time Panorama Image Stitching based on Multi-Threaded System Lee

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) Page 58

Table 3. Adaptive RANSAC distance threshold decision

1) Set the initial threshold to 𝑡0 = 𝑠 100⁄ , where the scale 𝑠 is the length of the

diagonal of the camera frame.

2) Euclidean distances 𝑑𝑖,𝑗 between 𝑙𝑖,𝑗 and 𝑙𝑡𝑖,𝑗 are computed until the n-th frame.

In the n-th frame, 𝑑𝑗𝑚𝑒𝑎𝑛
=

n
∑ 𝑑𝑖,𝑗
n
𝑖= is calculated from each j-th feature .

3) If 𝑑𝑗𝑚𝑒𝑎𝑛
 is twice the value of 𝑑𝑚𝑒𝑎𝑛 =

𝑛
∑ 𝑑𝑗𝑚𝑒𝑎𝑛
𝑛
𝑗= , 𝑑𝑗𝑚𝑒𝑎𝑛

 is removed to

exclude impulse errors.

4) Update the case specific threshold 𝑡 through 𝑑𝑚𝑒𝑎𝑛 , the dataset is computed

using Otsu threshold decision method as suggested by Otsu (1975).

5) At every n-th frame interval, steps 2) through 4) are repeated.

2.2. Blending Thread

The blending thread begins when the user selects a scene image to be stitched with the object image in

the tracking thread. In this work, we use automatic panoramic image stitching with invariant features
as suggested by Brown and Lowe (2007). This method uses invariant local features to find matches

between all of the images. A probabilistic model verifies the image matches in unordered image sets,

and stitches them automatically. Figure 3 shows the procedural flowchart and conceptual time

sequence for each process. The first step is to detect and match the scale-invariant feature transform
(SIFT) features as suggested by Lowe (2004) in all image sources, which are the selected scene

images and the object image. In addition, we find the connected components of the image matches.

For each connected component, a bundle adjustment as suggested by Triggs et al (1999) is performed
to estimate the camera position, which is difficult to do in real-time. Therefore, we create a new thread

for blending. When the blending thread is complete, the stitching result is updated as the object image.

ORB features and descriptors are extracted in the new object image for subsequent tracking. Finally,

the stitching result is reflected in the real-time preview in the tracking thread.

Figure 3. Procedural flowchart and conceptual time sequence for each process. In this figure, a,

b, c, and d are as follows: (a) set the initial frame, (b) select the scene image, (c) update the object

image, and (d) apply the blend result to the real-time preview image.

 (a) (b) (c)

Capture

a camera input image

Track

the initial image

Blend

selected images

Render

the preview image

Time Sequence

a

b c b c

d d

Real-Time Panorama Image Stitching based on Multi-Threaded System Lee

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) Page 59

(d) (e) (f)

(g)

Figure 4. Example of gradual steps for generating a panorama image using our approach with a

real-time preview: (a) the first object image, (b) a source image, (c) a real-time preview by (a)

and (b), (d) the stitching result of (c) and the second object image, (e) a source image, (f) a real-

time preview by (d) and (e), and (g) the final stitching result of (f).

3. EXPERIMENT

The experiments were conducted on a desktop computer with a 4 GHz Intel® core™ i7 CPU using a

USB 2.0 camera (Logitech webcam C920). The camera was calibrated using Zhang’s calibration
method as suggested by Zhang (2000), and its captured images are undistorted to remove the lens

distortion. Figure 4 shows an example of the gradual steps used for generating a panorama image by

our proposed method with a real-time preview. The real-time preview helps the user generate a user-
desired shape. Table 4 shows the process time per frame of each step in our multi-threaded system.

The time depends on the camera resolution. For real-time execution with a camera based on 30 fps, the

entire process has to be finished within 33ms. Thus, we use a resolution of 640 × 480 for real-time

previews in the tracking thread. The final panorama image will be generated into a 1920 × 1080
resolution, which we already selected for the source images.

Table 4. Comparison of reliability in each tracking approach. The

RMSE is the mean value of the x, y, z-axes.

Time per frame (ms)

640×480 1280×720 1920×1080

Tracking thread 12.4 34.71 87.18

Capture & non-distortion 5.07 17.61 37.4

Optical flow tracking 3.8 7.91 13.32

Calculate H 0.82 1.15 3.85

Outlier filtering 0.03 0.04 0.05

Generate preview image 2.68 8.0 32.56

Blending thread 1662.33 2412.4 5074.33

Estimate transform 743.5 1096.0 2467.5

Compose panorama 878.0 1227.4 2449.67

Update the object image 40.83 89.0 157.17

Table 5. Comparison of reliability in each tracking

approach. The RMSE is the mean value of the x, y, z-axes.

Index SIFT SURF ORB Proposed

RMSE
(mm)

18.37 39.34 111.39 4.16

Real-Time Panorama Image Stitching based on Multi-Threaded System Lee

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) Page 60

In another experiment, we examined the accuracy of the proposed tracking method. We use ORB

features for detection and matching. LKT tracks the detected ORB features with outlier filtering in the
tracking thread. In our experiments, camera input images were captured while the camera remained

fixed. We generate occlusions by hand or through changes in illumination. The root mean square

deviation (RMSE) is computed between the camera pose in the first frame without an occlusion and
camera poses in the other frames according to SIFT, the speed up robust feature (SURF) as suggested

by Bay et al (2006), ORB, and our proposed approach. Because the camera is fixed, the closer the

RMSE is to zero, the more stable it is. A camera pose is the fourth column vector of the camera

extrinsic matrix using Equation 1. The experiment results illustrate that the proposed method with
outlier filtering achieves better results than the other cases, as shown in Table 5.

𝑝𝑖 = [
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [𝑟 𝑟 𝑟 (𝑥, 𝑦, 𝑧, 1)T] ∙ 𝑝𝑜𝑏𝑗 (1)

4. CONCLUSION

This paper presented a user-friendly panorama image stitching approach with a real-time preview. The

tracking and blending threads are multi-threaded for a real-time performance. A prediction of the
panorama results can be shown through the selection of the scene image in real-time. Therefore, a user

can more easily generate a panorama image than in off-line based approaches. To evaluate the

accuracy of the proposed tracking method, we compared it with SIFT, SURF, and ORB. The
experiment results show that our approach can robustly track an object image and provide quality

preview images. We believe that our proposed multi-threaded approach can be useful to users who are

unaccustomed to panorama image stitching applications.

ACKNOWLEDGMENTS

This work was supported by MOLIT (Ministry of Land, Infrastructure and Transport), Korea, under

the UPA (Urban Planning & Architecture) research support program supervised by KAIA (Korea
Agency for Infrastructure Technology Advancement) (grant 13 Urban Planning & Architecture 02).

REFERENCES

Bay H, Tuytelaars T, Gool LV (2006). Speeded-up robust features (SURF), European Conference on

Computer Vision, Springer Berlin Heidelberg, 404-417.

Bouguet JY (2001). Pyramidal implementation of the affine Lucas Kanade feature tracker description

of the algorithm, Intel Corporation, 5, 1-10.

Brown M, Lowe DG (2007). Automatic panoramic image stitching using invariant features,

International journal of computer vision, 74(1), 59-73.

Cha JH, Jeon YS, Moon, YS, Lee SH (2012). Seamless and fast panoramic image stitching, IEEE

International Conference on Consumer Electronics (ICCE), 29-30.

Fischler MA, Robert CB (1981). Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography, Communications of the ACM, 24(6), 381-

395.

Lee T, Hollerer T (2009). Multithreaded hybrid feature tracking for markerless augmented reality,

IEEE Transactions on Visualization and Computer Graphics, 15(3), 355-368.

Real-Time Panorama Image Stitching based on Multi-Threaded System Lee

Proc. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) Page 61

Lee A, Lee JH (2015). Multi-threaded tracker with outlier filtering for spatial augmented reality,

International Technical Conference on Circuits Systems, Computers and Communications (ITC-

CSCC), 494-495.

Lowe D (2004). Distinctive image features from scale-invariant keypoints, International Journal of

Computer Vision, 60(2), 91-110.

Otsu N (1975). A threshold selection method from gray-level histograms, IEEE Trans. Sys. Man.

Cybern., 9, 62-66.

Rublee E, Rabaud V, Konolige K (2011). ORB: An efficient alternative to SIFT or SURF, Computer

Vision (ICCV), 2011 IEEE International Conference on, 2564-2571.

Triggs B, McLauchlan PF, Hartley RI. Fitzgibbon AW (1999). Bundle adjustment: A modern

synthesis, International workshop on vision algorithms, Springer Berlin Heidelberg, 298-372.

Zhang Z (2000). A flexible new technique for camera calibration, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(11), 1330-1334.

Zhang F, Liu F (2014). Parallax-tolerant image stitching, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 3262-3269.

